

Genetic Algorithm Applications
in Artificial Creativity
Capstone Final Report & Documentation

Conrad Dudziak

Advised by Yusuf Pisan

8/23/2019

Computer Science & Software Engineering

Computer Science & Software Engineering

TABLE OF CONTENTS

Introduction……1

Background…….1

 What is a Genetic Algorithm?.…………………………………………………………………………….1

The Principles of Evolution.………………………………………………………………………………...2

Requirements……………………………………………………………………………………………………….3

Constraints………3

Guidelines………..3

Assumptions………………………………………………………………………………………………………...4

Software Design…………………………………………………………………………………………………..4

Building a Generic Genetic Algorithm…………………………………………………………………..4

Building a String Breeding Genetic Algorithm………………………………………………………..5

Building a Shape Breeding Genetic Algorithm……………………………………………………….7

Building an Image Replicating Genetic Algorithm…………………………………………………..8

Deploying the Genetic Algorithm………………………………………………………………………11

Results……...13

Fitting, Scoring, and Breeding…………………………………………………………………………...13

Conclusion & Lessons Learned………………………………………………………………………….16

 Pros and Cons of Genetic Algorithms in Artificial Creativity……………………………………16

Future Work……………………………………………………………………………………………………….16

 Integrating Image Recognition………………………………………………………………………….16

 1
Computer Science & Software Engineering

Introduction

This capstone project followed the exploration of genetic algorithms and their applications to

artificial creativity. As a final product, this project resulted in an algorithm capable of replicating

images using polygons through evolutionary programming. To develop this software, three

fundamental questions had to be answered:

1. What is a genetic algorithm?

2. How can a genetic algorithm be applied to artificial creativity?

3. How can a genetic algorithm be deployed?

This project was started with no knowledge in evolutionary programming or artificial creativity.

Therefore, the first step in this capstone project was researching the literature of evolutionary

programming. Darwinism, fitness functions, breeding strategies, mutation rates, and the

principles of evolution became the core concepts by which the first algorithms in this project

were constructed.

After researching and recreating some fundamental example projects such as string breeding, I

began my research on artificial creativity. Google’s Deep Dream is an existing example of

artificial creativity that uses neural networks to create stylized images. There are two primary

barriers in artificial creativity: Rule breaking and the evaluation of creativity. This capstone

project explores the ways that a genetic algorithm can handle these barriers more successfully

than a neural network such as Google’s Deep Dream.

Next, in order to test the feasibility of a graphics based evolutionary program, I refactored the

string breeding algorithm into a shape breeding algorithm. This algorithm converged a

population of random shapes to a single target shape by color and vertex locations.

Finally, I extended the shape breeding algorithm into an image breeding algorithm, which uses

shapes to construct stylized images. The report that follows includes information about how

this algorithm operates, its proposed deployment to Microsoft Azure, an analysis on its

outputs, and the consequences that fitness and breeding has on artificial creativity.

Background

What is a Genetic Algorithm?
The traditional genetic algorithm is the process of narrowing a problem space by evaluating

the fitness of a guess. Therefore, an answer can be found quickly through a series of evolving

guesses. For example, in a situation where an individual is tasked with guessing a number, the

individual may have to guess an infinite amount of numbers before ever succeeding. However,

if the individual were to receive ‘hot’ or ‘cold’ feedback after each of their guesses, they would

have an easier time narrowing the possibilities in the problem set.

 2
Computer Science & Software Engineering

Some additional realms of genetic programming include:

- Interactive Selection

o Interactive selection explores the application of genetic algorithms in the visual

arts. User interaction can influence the way which a visual element evolves. An

example of user interaction could be a user choosing their favorite images from a

set of images. The computer would then create a new image with the target of

producing an image that the user would like based on their prior selections.

- Ecosystem Simulation

o The realm of ecosystem simulation explores the behaviors of pseudo-living

beings, where objects on the screen learn to interact with their environment and

each other. As a result, the objects mate and pass their genes on to a new

generation. However, limiting factors constrain the population, allowing only the

“fittest” individuals to reproduce.

The Principles of Evolution
Darwinism discusses natural selection and evolution under the pretense of three core

principles:

1. Heredity

a. Proceeding generations must have a means of receiving the

properties of their predecessors. The traits of one generation must

be passed to the next generation, or else the population set will

never converge to an evolved set. Without heredity, the DNA of the

population set will only ever contain random noise.

2. Variation

a. There must always be differences in the individuals within the

population set. Individuals in the population set cannot be identical,

or else reproduction will not result in new interesting sets of genes.

Therefore, DNA must have the ability to mutate to prevent the

population from converging to an incomplete answer.

3. Selection

a. There must be a tool used by the population to reproduce.

Parents must breed in order to produce the next generation.

However, darwinian evolution states that the most “fit” of the

population have the highest chance at reproducing. As a result,

individuals with the most desirable genes are also the most

likely to be selected for reproduction.

 3
Computer Science & Software Engineering

Requirements

This section lists the functionality of the image replicating software.

1. The image replicator must be accessible by a web browser on any device.

2. The image replicator must load with a default input image ready for computation.

3. The image replicator must be able to receive an image of any size as an input image.

4. Input images must be acceptable as types png, jpeg, or jpg.

5. The image replicator must have input fields for the genetic algorithms population size,

polygon count, vertex count, mutation rate, and resolution scale factor.

6. The image replicator must perform computations on a smaller scaled version of the

input image at a scale factor of the resolution scale factor.

7. The image replicator must display the average fitness of the entire population.

8. The image replicator must display the fitness value of the best fit image.

9. The best fit image must be displayed in a canvas of equal size of the input canvas.

10. The image replicator must implement a genetic algorithm that uses principles of

heredity, variation, and selection under an object-oriented model.

11. The image replicator must use only sets of colored semi-transparent polygons to

construct the target image.

Constraints

This section lists the restrictions placed on the completion of this project.

1. The image replicator must be completed and available by web URL by August 23, 2019.

2. The image replicator is hosted on a trial Azure account with $200 credit, rendering it

invalid after the credits are consumed.

3. The image replicator is also hosted on github pages, but this version of the image

replicator runs locally on the client’s web browser, which results in runtimes constrained

to the user’s hardware.

Guidelines

The following guidelines are suggestions for when using or debugging the image replicator

software.

1. The image replicator will always perform better when replicating target images that

contain contrasting colors and sharp edges. Input images containing soft colors and no

edges are likely to struggle converging and take more time.

 4
Computer Science & Software Engineering

2. Lower resolution images will always yield results in a faster runtime and in fewer

generations than larger resolution images. Therefore, it is recommended not to use

images larger than 1024x1024 pixels.

3. Any received inputs will not be included in a computation until the start button is

clicked. If the algorithm is already running, then the algorithm must first be stopped

with the stop button.

4. The resolution scale factor determines how precise the replicated image will be to the

target image. However, a low resolution scale factor will harm performance as more

internal computations are required to compare pixel values.

5. If an image is converging too early, the problem likely lies in the mutation rate.

However, too high of a mutation rate can result in random noise which is incapable of

converging.

Assumptions

The following assumptions are made under the constraints of this project.

1. The user is connecting to the image replicator software using a supported web-browser

such as google chrome.

2. Users cannot use more Azure computational space than provided by the Azure trial.

3. Users connecting to the github pages version of the image replicator are not using a

mobile device, as a mobile device will be very slow in comparison to a laptop or desktop

machine.

4. Users always input non-negative and non-zero values into the input fields.

5. Users always upload an accepted image format file into the input field.

Software Design

Building a Generic Genetic Algorithm

The first step in constructing a genetic algorithm is working the three principles of evolution

into an iterative pseudo code loop. Figure 1 shows the activity diagram of a generic genetic

algorithm as it performs evolutionary programming with heredity, variation, and selection.

Heredity occurs during mating, when two individuals are bred together to produce an

offspring. The resulting child consists of the genes of its parents, so that the current generation

always influences and contributes to the DNA of the proceeding generation. In this way, traits

are carried on between generations to provide the population with continuity.

Variation occurs when the resulting child is mutated. Mutation provides a population with the

necessary change and variance needed to converge the population towards a target.

 5
Computer Science & Software Engineering

Otherwise, the population will always be limited by its DNA pallet, where missing DNA

components for the solution can never be found because no parent possesses them.

Selection occurs when the mating pool is populated. The method by which the mating pool is

populated is undescribed because of the generic nature of this genetic algorithm. However, it

is likely to occur in some form of natural selection, where the most fit individual of the

population has the most presence in the mating pool. Therefore, when randomly selected for

breeding from the mating pool, the most fit individual has the largest percent chance of being

chosen.

Figure 1: Activity Diagram of a Generic Genetic Algorithm

As a generic construction of a genetic algorithm, this iterative sequence can be applied to a

wide variety of problems where details of DNA interactions are specified only in the data

structure of the gene sequence.

Building a String Breeding Genetic Algorithm
As a first attempt at evolutionary programming, I followed textbook tutorials to create a

genetic algorithm capable of converging a population set of random strings to a single target

string. The algorithm was written in C# under an object-oriented model consisting of three

classes: Driver, Population, and DNA.

Figure 2 shows a diagram describing the composition of the string breeding algorithm.

 6
Computer Science & Software Engineering

Figure 2: Composition of String Breeding Genetic Algorithm

Driver

The Driver class defines the target string, population size, and mutation rate that the

population will experience. The driver then creates a Population object with these parameters

and begins to loop through the evolutionary process for that population.

Population

The Population class behaves as a data structure containing all the individuals (DNA objects) of

the population set. Upon construction, the population object populates itself with DNA objects.

These DNA objects are randomly initialized. The population object also holds the

implementation necessary for the selection process. The selection of breeders is done by

weighting all the individuals in the population set against their contribution to a summated

total fitness score of the population. An individual who contributed largely to the summated

fitness score is more likely to be chosen for reproduction.

DNA

The DNA class behaves as a gene sequence. This class contains the actual character array

(string) of each corresponding individual in the population set. Therefore, this class contains

the implementation of the variation and heredity components of the evolutionary principles.

DNA can crossover with a partner DNA by splicing character arrays at a random midpoint. The

resulting DNA is returned to the population set as a new child. DNA can also mutate, which is

the process of setting an element in the character array to a new random element.

 7
Computer Science & Software Engineering

Lastly, the DNA class is responsible for calculating a fitness score for each DNA object. The

DNA object receives a target string and compares its character array values to each value in the

target string. If the values match, the fitness score is incremented.

Github link to the string breeding algorithm:

• https://github.com/ConradDudziak/Genetic-Algorithm-Converging-Strings

Building a Shape Breeding Genetic Algorithm
The next step towards constructing an image replicating software was adding graphics to a

genetic algorithm. To accomplish this, I created an evolutionary program capable of receiving a

target polygon and converging a population of random polygons to the target polygon.

Figure 3 shows a diagram describing the composition of the shape breeding genetic algorithm.

The genes of the individuals consist of the polygon’s vertices and color RGBA values.

Figure 3: Composition of Shape Breeding Genetic Algorithm

JavaScript was used to create this genetic algorithm with graphics, because of the fluidity of

the web-based scripting language and the ability to quickly construct and test possible

implementations. The P5.js library was used to draw shapes onto the screen with a framerate-

based draw loop and a simple shape API.

The string breeding and shape breeding genetic algorithms were both implemented around

the generic genetic algorithm, where changes only occurred in the gene sequence.

https://github.com/ConradDudziak/Genetic-Algorithm-Converging-Strings

 8
Computer Science & Software Engineering

The steps involved in refactoring the previous edition of the genetic algorithm into the

graphical version were as follows:

1. Created Polygon.js and Vertex.js. These classes are data structures used by the genetic

algorithm to store information about shapes within the DNA objects genes.

o Polygon.js consists of a vertex list and a red, green, blue, and alpha integer value.

Polygon.js can also construct random polygons.

o Vertex.js is an object used by the Polygon.js class to create a set of (x,y)

coordinates. Each (x,y) coordinate is constructed as a vertex and added to the

Polygons vertex list.

2. Ported DNA, Population, and Driver to JavaScript classes.

o The overall structure and implementation of these classes is identical to the C#

classes, other than syntax and language specific libraries.

3. Created a fitness function within the DNA.js class that scores each DNA (individual)

based on its genes (polygon). The function receives a target polygon, which is then used

for comparison against the DNA’s genes (polygon). Both the RGBA and vertex list of the

polygon are used to calculate the fitness score.

o Color values of the target and current DNA are rescaled from 0-255 to 0-1. The

scores of the color values are then subtracted to result in a difference, which is

used to determine that specific colors contribution to the total score. The scores

across all colors are then summated.

o To calculate the score of the vertex list, the closest pairing vertices between the

target and DNA are calculated with a distance function. The shortest distance

between two vertices of the polygons is then rescaled based on the diagonal

distance of the canvas. This results in a score for a single vertex pair based on the

worst-case scenario of a possible vertex pair distance (where the vertices of the

two polygons are on opposite corners of the canvas). Once all the vertices are

paired and scored, the score is added to the color score and returned as the

polygon’s fitness.

4. Created a breeding algorithm that uses a random weighted sample of the population.

DNA is randomly selected from the sample and mutated with a random rate, where the

color and vertex values of the polygon is slightly adjusted to add some variation. The

newly mutated DNA is then placed into a new population for the next generation.

Building an Image Replicating Genetic Algorithm
After integrating graphics into the genetic algorithm, there remained one problem: How can

sets of polygons be compared to the data of an image? In order to make the final image

replicating software, I needed a mechanism capable of comparing image data against polygon

 9
Computer Science & Software Engineering

data. P5.js is limited in the way that it can compare polygons. Polygons can only be compared

by vertices and color values, which makes it unusable for a genetic algorithm that receives an

image as a target rather than a polygon as a target. The solution to this problem was canvases

and canvas contexts.

The Canvas 2D API offers graphical support with a html canvas element. A canvas element can

draw images and shapes with data describing a set of points and colors. After an image or

shape is drawn to the canvas element, the image data can be retrieved as an integer array. This

returns the pixel values of the image in an array size width*height*4 (the four RGBA values for

each pixel). As a result, this mechanism of drawing and cooking images into data arrays

provided the software with the ability to easily convert polygon sets into images.

Figure 4 shows a diagram describing the composition of the image breeding genetic algorithm.

The genes of the individuals are pictures which consist of a polygon set.

Figure 4: Composition of Image Breeding Genetic Algorithm

The steps involved in refactoring the previous genetic algorithm into the image constructing

version were as follows:

1. Created Picture.js, driver.js, and index.html.

o Picture.js is the gene data structure of the genetic algorithm. Picture.js is

responsible for holding a set of randomly constructed polygons and drawing that

set of polygons to a provided canvas.

o Driver.js is the location of the booting and initialization of the genetic algorithm.

This file includes the windows.onload(), and it is the file the contains all

 10
Computer Science & Software Engineering

configurations and iterating tools for the genetic algorithm. This file is also

responsible for retrieving all the html elements from the webpage.

o Index.html consists of three canvases, an input image, and all the necessary

scripts. The first canvas is the inputCanvas, which displays the input image. The

second canvas is the outputCanvas, which displays the current most fit individual

of the population. The dataCanvas is a hidden canvas which is used for

calculations when cooking individuals (which consist of polygon sets) into images

(arrays of image data).

2. Refactored Polygon.js, Vertex.js, DNA.js, and Population.js.

o Polygon.js was simplified to receive only the single parameter of total vertices.

Polygon.js also creates a random polygon based on RGBA values with range of 0

to 1. These values are then later scaled appropriately when applied to filling a

drawn polygon. In the same way, Vertex.js was changed to operate on coordinate

values with ranges from 0 to 1, which are later scaled to the appropriate width

and height.

o DNA.js was changed to be Individual.js. Individual.js serves the same purpose as

DNA.js, but the genes of an Individual now consist of a Picture. The fitness of

individuals is calculated with a mean squared error between the individual’s

genes image data array and the target image data array. Breeding between

individuals first requires a process of populating a mating pool with a weighted

sample. Individuals are then selected from that mating pool at random for

breeding. For each child, one of the two parents are randomly selected to provide

a polygon. The polygon is then mutated and provided to the child. Lastly, the

child replaces an individual in the previous population set.

o Population.js now receives a width, height, targetData array, polygonCount,

vertexCount, and dataContext. These items are used to populate individuals with

polygons, and to calculate the fitness of individuals. The width and height specify

the width and height of the dataCanvas.

o Setup a web-GUI version of the running genetic algorithm on github pages.

▪ https://conraddudziak.github.io/ImageCreationWithGeneticAlgorithms/

Figure 5 shows the UML class diagram for the interaction between the driver component and

the population object. The driver is responsible for collecting inputs and running the iterations

of the genetic algorithm, which is exposed to the driver through the population object. The

population object is constructed by the driver and called to iterate the generate method at set

intervals.

Figure 6 shows the UML class diagram for the entire genetic algorithm, where the population is

responsible for constructing Individuals. The genes of Individuals then consist of a Picture,

https://conraddudziak.github.io/ImageCreationWithGeneticAlgorithms/

 11
Computer Science & Software Engineering

which in turn consist of Polygons and Vertices. The picture object contains the base level draw

method, which handles the actual logic for drawing the polygon data onto a canvas parameter.

Figure 5: UML Class Diagram of Driver and Population Components

Figure 6: UML Class Diagram of Genetic Algorithm

Deploying the Genetic Algorithm
There are many options and methods to deploy a web hosting service for user access. The two

web hosting services used in this project were github pages and Microsoft Azure.

 12
Computer Science & Software Engineering

Github pages allows for rapid prototyping at no cost and is used to host a client-side version of

the genetic algorithm. This means that the computational load of the genetic algorithm is

placed onto the user’s web-browser. In comparison, Microsoft Azure offers the ability for the

computational load of the algorithm to occur on the server side.

Figure 7 shows a proposed dataflow diagram for the integration of Microsoft Azure into the

genetic algorithm. Information is passed between three main entities in the diagram: the users

web-browser, the azure web app, and an azure web job.

Figure 7: Dataflow Diagram of Proposed Azure Integration

The users web-browser sends a connection request to the Azure Web App, which hosts the

index.html page along with the supporting JavaScript items. Upon clicking the start button, an

HTTP get request is sent to the Azure Web App to request an Azure Web job process ID. The

web job then returns a handle to the Azure Web App which opens a new page in the user’s

web-browser.

The Azure web job then handles computations of the genetic algorithm and the user web

browser can query for results. The query contains a process ID which the Azure web job uses to

identify which process is computing the user’s algorithm. A data package is then returned to

the user’s web-browser through the Azure Web App containing the best fit image and the

accompanying genetic algorithm data.

 13
Computer Science & Software Engineering

Figure 8 shows a stack representing the system levels which information is passed to and from

the client side.

Figure 8: System Dataflow Stack

For the final deliverable of this project, only the Azure Web App was completed as part of this

system. Azure Web Job was not fully integrated.

Results

The process of creating an image constructing genetic algorithm required iterative deliverables

that slowly built up to a final product. Therefore, the strategies and functions implemented

within the final algorithm are as much a result of this project as the actual data outputs

collected in the projects analysis.

Fitting, Scoring, and Breeding

The final scoring method of this project uses JavaScript canvases to convert polygon sets into

image data. Figure 9 shows an illustration with pseudo code of the scoring process.

Figure 9: Fitting and Scoring Pseudo Code Illustration

 14
Computer Science & Software Engineering

The other key result from the construction of this algorithm were the differences between

breeding strategies. Specifically, this project explored the differences between parent breeding

and mutation breeding. Figure 10 shows an illustration of the two breeding strategies, where

both processes explore different methods of reproducing the next generation.

Figure 10: Illustration of Parent Breeding and Mutation Breeding

Parent breeding reproduces by using two or more individuals to construct a new individual,

where each parent involved has a chance to pass DNA to the child. Mutation breeding is the

process of a single Individual mutating into multiple individuals, which are then selected for

survival based on their fitness. Table 1 shows a comparison of parent breeding and mutation

breeding.

Table 1: Comparison of Parent Breeding and Mutation Breeding

Criteria Parent Breeding Mutation Breeding

Technique Genes are passed to children

which replace the population

Genes mutate to replace individuals’

old genes

Replacement

Method

Children always replace the

previous generation

Resulting mutated genes replace old

genes only if they are more fit

Population Size >= 2 1

Mutation

Restrictions

Parents must share similar gene

structure (number of polygons)

No restrictions

Can Mutate • Colors

• Vertices

• Colors

• Vertices

• Total polygons

• Total vertices

Mutation breeding provides the genetic algorithm with further control of the ways which the

population set can be converged. Furthermore, mutation breeding gives the population the

ability to start with minimal gene sequence data. This means that the population can begin

with individuals only containing a single polygon, which helps improve early runtimes.

 15
Computer Science & Software Engineering

Figure 11 shows a comparison of the data collected with the algorithm using both parent

breeding and mutation breeding.

Figure 11: Comparison of Parent Breeding and Mutation Breeding

Mutation Breeding Generations: 250 Generations: 800 Generations: 12000 Generations: 71000

 Time: 10 seconds Time: 30 seconds Time: 5 minutes Time: 1 hour

Best fit: 23% Best fit: 52% Best fit: 74% Best fit: 87%

Parent Breeding Generations: 110 Generations: 320 Generations: 4000 Generations: 22000

 Time: 10 seconds Time: 30 seconds Time: 5 minutes Time: 1 hour

Best fit: 8% Best fit: 32% Best fit: 51% Best fit: 71%

Figure 12 shows more output results of the genetic algorithm ran with both parent breeding

and mutation breeding.

Figure 12: Genetic Algorithm Test Case Results

Target Image Generations: 250 Generations: 750 Generations: 3500 Generations: 7000 Generations: 50000

 Time: 10 seconds Time: 1 minute Time: 5 minutes Time: 30 minutes Time: 3 hours

Avg fit: 51% Avg fit: 68% Avg fit: 78% Avg fit: 83% Avg fit: 89%

Best fit: 58% Best fit: 71% Best fit: 79% Best fit: 85% Best fit: 90%

 16
Computer Science & Software Engineering

The use of parent breeding and mutation breeding is situational, where no single breeding

strategy is best for every case. For example, the square image in figure 12 uses mutation

breeding to subtract unneeded geometry, while the Mona Lisa image uses parent breeding

because of its need for detail which a larger gene sequence can provide.

Conclusion & Lessons Learned

Artificial creativity is constrained by two fundamental barriers: Rule breaking and the evaluation

of creativity. This project intended to solve these barriers using genetic algorithms. The

following is a discussion on the pros and cons of genetic algorithms in artificial creativity.

Pros and Cons of Genetic Algorithms in Artificial Creativity
Google’s Deep Dream is an artificially creative program that uses convolutional neural

networks to find and enhance patterns in images through algorithmic pareidolia. This solution

requires a black box algorithm that has greater freedom in rule breaking but is much harder to

evaluate. A block box algorithm prevents the ability for a human to study the functions and

strategies that exhibit the creative behavior.

In comparison, the image constructing genetic algorithm created in this research project is

much easier to evaluate because of its well-defined fitness function and breeding strategies. As

a result, the functions that are producing creative outputs can be observed and tweaked in

order to help define creativity and what makes the algorithm creative.

Although the fitness function of a genetic algorithm makes the softwares creative behaviors

easy to evaluate, it also inhibits the programs ability to break rules. This is because fitness

functions and breeding strategies must be distinctly written by a human, which inevitably limits

the creativity of the machine and its ability to handle problems.

Future Work

Future work on this project consists of improving the fitness function so that the algorithm will

no longer require a target image for comparisons.

Integrating Image Recognition
In order to produce an algorithm that can create unique images without the need of an input

reference image, a neural network is required. Instead of comparing pixel values, the program

can pass image data arrays to an external image recognition software. The algorithm will then

receive feedback based on what the software possibly recognizes in the polygon set. The

recognized object will then be used to score the population and slowly converge the

population towards the most recognized version of that object.

