
 

 

 

 

 

Genetic Algorithm Applications 
in Artificial Creativity 
Capstone Final Report & Documentation 

 

Conrad Dudziak 
 
Advised by Yusuf Pisan 
 
8/23/2019 

Computer Science & Software Engineering 



 

Computer Science & Software Engineering 

TABLE OF CONTENTS 

 

 

Introduction…………………………………………………………………………………………………………1 

Background………………………………………………………………………………………………………….1 

 What is a Genetic Algorithm?.…………………………………………………………………………….1 

The Principles of Evolution.………………………………………………………………………………...2 

Requirements……………………………………………………………………………………………………….3 

Constraints……………………………………………………………………………………………………………3 

Guidelines……………………………………………………………………………………………………………..3 

Assumptions………………………………………………………………………………………………………...4 

Software Design…………………………………………………………………………………………………..4 

Building a Generic Genetic Algorithm…………………………………………………………………..4 

Building a String Breeding Genetic Algorithm………………………………………………………..5 

Building a Shape Breeding Genetic Algorithm……………………………………………………….7 

Building an Image Replicating Genetic Algorithm…………………………………………………..8 

Deploying the Genetic Algorithm………………………………………………………………………11 

Results………………………………………………………………………………………………………………...13 

Fitting, Scoring, and Breeding…………………………………………………………………………...13 

Conclusion & Lessons Learned………………………………………………………………………….16 

 Pros and Cons of Genetic Algorithms in Artificial Creativity……………………………………16 

Future Work……………………………………………………………………………………………………….16 

 Integrating Image Recognition………………………………………………………………………….16 

 

  

 



 1 
Computer Science & Software Engineering 
 

Introduction 
 

This capstone project followed the exploration of genetic algorithms and their applications to 

artificial creativity. As a final product, this project resulted in an algorithm capable of replicating 

images using polygons through evolutionary programming. To develop this software, three 

fundamental questions had to be answered:  

1. What is a genetic algorithm? 

2. How can a genetic algorithm be applied to artificial creativity?  

3. How can a genetic algorithm be deployed? 

This project was started with no knowledge in evolutionary programming or artificial creativity. 

Therefore, the first step in this capstone project was researching the literature of evolutionary 

programming. Darwinism, fitness functions, breeding strategies, mutation rates, and the 

principles of evolution became the core concepts by which the first algorithms in this project 

were constructed. 

After researching and recreating some fundamental example projects such as string breeding, I 

began my research on artificial creativity. Google’s Deep Dream is an existing example of 

artificial creativity that uses neural networks to create stylized images. There are two primary 

barriers in artificial creativity: Rule breaking and the evaluation of creativity. This capstone 

project explores the ways that a genetic algorithm can handle these barriers more successfully 

than a neural network such as Google’s Deep Dream. 

Next, in order to test the feasibility of a graphics based evolutionary program, I refactored the 

string breeding algorithm into a shape breeding algorithm. This algorithm converged a 

population of random shapes to a single target shape by color and vertex locations. 

Finally, I extended the shape breeding algorithm into an image breeding algorithm, which uses 

shapes to construct stylized images. The report that follows includes information about how 

this algorithm operates, its proposed deployment to Microsoft Azure, an analysis on its 

outputs, and the consequences that fitness and breeding has on artificial creativity. 

Background 
 

What is a Genetic Algorithm? 
The traditional genetic algorithm is the process of narrowing a problem space by evaluating 

the fitness of a guess. Therefore, an answer can be found quickly through a series of evolving 

guesses. For example, in a situation where an individual is tasked with guessing a number, the 

individual may have to guess an infinite amount of numbers before ever succeeding. However, 

if the individual were to receive ‘hot’ or ‘cold’ feedback after each of their guesses, they would 

have an easier time narrowing the possibilities in the problem set. 
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Some additional realms of genetic programming include: 

- Interactive Selection 

o Interactive selection explores the application of genetic algorithms in the visual 

arts. User interaction can influence the way which a visual element evolves. An 

example of user interaction could be a user choosing their favorite images from a 

set of images. The computer would then create a new image with the target of 

producing an image that the user would like based on their prior selections. 

- Ecosystem Simulation 

o The realm of ecosystem simulation explores the behaviors of pseudo-living 

beings, where objects on the screen learn to interact with their environment and 

each other. As a result, the objects mate and pass their genes on to a new 

generation. However, limiting factors constrain the population, allowing only the 

“fittest” individuals to reproduce. 

The Principles of Evolution 
Darwinism discusses natural selection and evolution under the pretense of three core 

principles: 

1. Heredity 

a. Proceeding generations must have a means of receiving the 

properties of their predecessors. The traits of one generation must 

be passed to the next generation, or else the population set will 

never converge to an evolved set. Without heredity, the DNA of the 

population set will only ever contain random noise.  

2. Variation 

a. There must always be differences in the individuals within the 

population set. Individuals in the population set cannot be identical, 

or else reproduction will not result in new interesting sets of genes. 

Therefore, DNA must have the ability to mutate to prevent the 

population from converging to an incomplete answer. 

3. Selection 

a. There must be a tool used by the population to reproduce. 

Parents must breed in order to produce the next generation. 

However, darwinian evolution states that the most “fit” of the 

population have the highest chance at reproducing. As a result, 

individuals with the most desirable genes are also the most 

likely to be selected for reproduction. 
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Requirements 
 

This section lists the functionality of the image replicating software. 

1. The image replicator must be accessible by a web browser on any device. 

2. The image replicator must load with a default input image ready for computation. 

3. The image replicator must be able to receive an image of any size as an input image. 

4. Input images must be acceptable as types png, jpeg, or jpg. 

5. The image replicator must have input fields for the genetic algorithms population size, 

polygon count, vertex count, mutation rate, and resolution scale factor. 

6. The image replicator must perform computations on a smaller scaled version of the 

input image at a scale factor of the resolution scale factor. 

7. The image replicator must display the average fitness of the entire population. 

8. The image replicator must display the fitness value of the best fit image. 

9. The best fit image must be displayed in a canvas of equal size of the input canvas. 

10. The image replicator must implement a genetic algorithm that uses principles of 

heredity, variation, and selection under an object-oriented model. 

11. The image replicator must use only sets of colored semi-transparent polygons to 

construct the target image. 

Constraints 
 

This section lists the restrictions placed on the completion of this project. 

1. The image replicator must be completed and available by web URL by August 23, 2019. 

2. The image replicator is hosted on a trial Azure account with $200 credit, rendering it 

invalid after the credits are consumed. 

3. The image replicator is also hosted on github pages, but this version of the image 

replicator runs locally on the client’s web browser, which results in runtimes constrained 

to the user’s hardware. 

Guidelines 
 

The following guidelines are suggestions for when using or debugging the image replicator 

software. 

1. The image replicator will always perform better when replicating target images that 

contain contrasting colors and sharp edges. Input images containing soft colors and no 

edges are likely to struggle converging and take more time. 



 4 
Computer Science & Software Engineering 
 

2. Lower resolution images will always yield results in a faster runtime and in fewer 

generations than larger resolution images. Therefore, it is recommended not to use 

images larger than 1024x1024 pixels. 

3. Any received inputs will not be included in a computation until the start button is 

clicked. If the algorithm is already running, then the algorithm must first be stopped 

with the stop button. 

4. The resolution scale factor determines how precise the replicated image will be to the 

target image. However, a low resolution scale factor will harm performance as more 

internal computations are required to compare pixel values. 

5. If an image is converging too early, the problem likely lies in the mutation rate. 

However, too high of a mutation rate can result in random noise which is incapable of 

converging.  

Assumptions 
 

The following assumptions are made under the constraints of this project. 

1. The user is connecting to the image replicator software using a supported web-browser 

such as google chrome. 

2. Users cannot use more Azure computational space than provided by the Azure trial. 

3. Users connecting to the github pages version of the image replicator are not using a 

mobile device, as a mobile device will be very slow in comparison to a laptop or desktop 

machine. 

4. Users always input non-negative and non-zero values into the input fields. 

5. Users always upload an accepted image format file into the input field. 

 

Software Design 
 

Building a Generic Genetic Algorithm 

The first step in constructing a genetic algorithm is working the three principles of evolution 

into an iterative pseudo code loop. Figure 1 shows the activity diagram of a generic genetic 

algorithm as it performs evolutionary programming with heredity, variation, and selection. 

Heredity occurs during mating, when two individuals are bred together to produce an 

offspring. The resulting child consists of the genes of its parents, so that the current generation 

always influences and contributes to the DNA of the proceeding generation. In this way, traits 

are carried on between generations to provide the population with continuity. 

Variation occurs when the resulting child is mutated. Mutation provides a population with the 

necessary change and variance needed to converge the population towards a target. 
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Otherwise, the population will always be limited by its DNA pallet, where missing DNA 

components for the solution can never be found because no parent possesses them. 

Selection occurs when the mating pool is populated. The method by which the mating pool is 

populated is undescribed because of the generic nature of this genetic algorithm. However, it 

is likely to occur in some form of natural selection, where the most fit individual of the 

population has the most presence in the mating pool. Therefore, when randomly selected for 

breeding from the mating pool, the most fit individual has the largest percent chance of being 

chosen. 

Figure 1: Activity Diagram of a Generic Genetic Algorithm 

 
 

As a generic construction of a genetic algorithm, this iterative sequence can be applied to a 

wide variety of problems where details of DNA interactions are specified only in the data 

structure of the gene sequence. 

Building a String Breeding Genetic Algorithm 
As a first attempt at evolutionary programming, I followed textbook tutorials to create a 

genetic algorithm capable of converging a population set of random strings to a single target 

string. The algorithm was written in C# under an object-oriented model consisting of three 

classes: Driver, Population, and DNA. 

Figure 2 shows a diagram describing the composition of the string breeding algorithm. 
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Figure 2: Composition of String Breeding Genetic Algorithm 

 

Driver 

The Driver class defines the target string, population size, and mutation rate that the 

population will experience. The driver then creates a Population object with these parameters 

and begins to loop through the evolutionary process for that population. 

Population 

The Population class behaves as a data structure containing all the individuals (DNA objects) of 

the population set. Upon construction, the population object populates itself with DNA objects. 

These DNA objects are randomly initialized. The population object also holds the 

implementation necessary for the selection process. The selection of breeders is done by 

weighting all the individuals in the population set against their contribution to a summated 

total fitness score of the population. An individual who contributed largely to the summated 

fitness score is more likely to be chosen for reproduction. 

DNA 

The DNA class behaves as a gene sequence. This class contains the actual character array 

(string) of each corresponding individual in the population set. Therefore, this class contains 

the implementation of the variation and heredity components of the evolutionary principles. 

DNA can crossover with a partner DNA by splicing character arrays at a random midpoint. The 

resulting DNA is returned to the population set as a new child. DNA can also mutate, which is 

the process of setting an element in the character array to a new random element. 



 7 
Computer Science & Software Engineering 
 

Lastly, the DNA class is responsible for calculating a fitness score for each DNA object. The 

DNA object receives a target string and compares its character array values to each value in the 

target string. If the values match, the fitness score is incremented. 

Github link to the string breeding algorithm: 

• https://github.com/ConradDudziak/Genetic-Algorithm-Converging-Strings 

Building a Shape Breeding Genetic Algorithm 
The next step towards constructing an image replicating software was adding graphics to a 

genetic algorithm. To accomplish this, I created an evolutionary program capable of receiving a 

target polygon and converging a population of random polygons to the target polygon.  

Figure 3 shows a diagram describing the composition of the shape breeding genetic algorithm. 

The genes of the individuals consist of the polygon’s vertices and color RGBA values. 

Figure 3: Composition of Shape Breeding Genetic Algorithm 

 

JavaScript was used to create this genetic algorithm with graphics, because of the fluidity of 

the web-based scripting language and the ability to quickly construct and test possible 

implementations. The P5.js library was used to draw shapes onto the screen with a framerate-

based draw loop and a simple shape API. 

The string breeding and shape breeding genetic algorithms were both implemented around 

the generic genetic algorithm, where changes only occurred in the gene sequence.  

https://github.com/ConradDudziak/Genetic-Algorithm-Converging-Strings
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The steps involved in refactoring the previous edition of the genetic algorithm into the 

graphical version were as follows: 

1. Created Polygon.js and Vertex.js. These classes are data structures used by the genetic 

algorithm to store information about shapes within the DNA objects genes.  

o Polygon.js consists of a vertex list and a red, green, blue, and alpha integer value. 

Polygon.js can also construct random polygons. 

o Vertex.js is an object used by the Polygon.js class to create a set of (x,y) 

coordinates. Each (x,y) coordinate is constructed as a vertex and added to the 

Polygons vertex list. 

2. Ported DNA, Population, and Driver to JavaScript classes.  

o The overall structure and implementation of these classes is identical to the C# 

classes, other than syntax and language specific libraries. 

3. Created a fitness function within the DNA.js class that scores each DNA (individual) 

based on its genes (polygon). The function receives a target polygon, which is then used 

for comparison against the DNA’s genes (polygon). Both the RGBA and vertex list of the 

polygon are used to calculate the fitness score. 

o Color values of the target and current DNA are rescaled from 0-255 to 0-1. The 

scores of the color values are then subtracted to result in a difference, which is 

used to determine that specific colors contribution to the total score. The scores 

across all colors are then summated. 

o To calculate the score of the vertex list, the closest pairing vertices between the 

target and DNA are calculated with a distance function. The shortest distance 

between two vertices of the polygons is then rescaled based on the diagonal 

distance of the canvas. This results in a score for a single vertex pair based on the 

worst-case scenario of a possible vertex pair distance (where the vertices of the 

two polygons are on opposite corners of the canvas). Once all the vertices are 

paired and scored, the score is added to the color score and returned as the 

polygon’s fitness. 

4. Created a breeding algorithm that uses a random weighted sample of the population. 

DNA is randomly selected from the sample and mutated with a random rate, where the 

color and vertex values of the polygon is slightly adjusted to add some variation. The 

newly mutated DNA is then placed into a new population for the next generation. 

Building an Image Replicating Genetic Algorithm 
After integrating graphics into the genetic algorithm, there remained one problem: How can 

sets of polygons be compared to the data of an image? In order to make the final image 

replicating software, I needed a mechanism capable of comparing image data against polygon 



 9 
Computer Science & Software Engineering 
 

data. P5.js is limited in the way that it can compare polygons. Polygons can only be compared 

by vertices and color values, which makes it unusable for a genetic algorithm that receives an 

image as a target rather than a polygon as a target. The solution to this problem was canvases 

and canvas contexts. 

The Canvas 2D API offers graphical support with a html canvas element. A canvas element can 

draw images and shapes with data describing a set of points and colors. After an image or 

shape is drawn to the canvas element, the image data can be retrieved as an integer array. This 

returns the pixel values of the image in an array size width*height*4 (the four RGBA values for 

each pixel). As a result, this mechanism of drawing and cooking images into data arrays 

provided the software with the ability to easily convert polygon sets into images. 

Figure 4 shows a diagram describing the composition of the image breeding genetic algorithm. 

The genes of the individuals are pictures which consist of a polygon set. 

Figure 4: Composition of Image Breeding Genetic Algorithm 

 

The steps involved in refactoring the previous genetic algorithm into the image constructing 

version were as follows: 

1. Created Picture.js, driver.js, and index.html. 

o Picture.js is the gene data structure of the genetic algorithm. Picture.js is 

responsible for holding a set of randomly constructed polygons and drawing that 

set of polygons to a provided canvas.  

o Driver.js is the location of the booting and initialization of the genetic algorithm. 

This file includes the windows.onload(), and it is the file the contains all 
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configurations and iterating tools for the genetic algorithm. This file is also 

responsible for retrieving all the html elements from the webpage.  

o Index.html consists of three canvases, an input image, and all the necessary 

scripts. The first canvas is the inputCanvas, which displays the input image. The 

second canvas is the outputCanvas, which displays the current most fit individual 

of the population. The dataCanvas is a hidden canvas which is used for 

calculations when cooking individuals (which consist of polygon sets) into images 

(arrays of image data).  

2. Refactored Polygon.js, Vertex.js, DNA.js, and Population.js.  

o Polygon.js was simplified to receive only the single parameter of total vertices. 

Polygon.js also creates a random polygon based on RGBA values with range of 0 

to 1. These values are then later scaled appropriately when applied to filling a 

drawn polygon. In the same way, Vertex.js was changed to operate on coordinate 

values with ranges from 0 to 1, which are later scaled to the appropriate width 

and height.  

o DNA.js was changed to be Individual.js. Individual.js serves the same purpose as 

DNA.js, but the genes of an Individual now consist of a Picture. The fitness of 

individuals is calculated with a mean squared error between the individual’s 

genes image data array and the target image data array. Breeding between 

individuals first requires a process of populating a mating pool with a weighted 

sample. Individuals are then selected from that mating pool at random for 

breeding. For each child, one of the two parents are randomly selected to provide 

a polygon. The polygon is then mutated and provided to the child. Lastly, the 

child replaces an individual in the previous population set.  

o Population.js now receives a width, height, targetData array, polygonCount, 

vertexCount, and dataContext. These items are used to populate individuals with 

polygons, and to calculate the fitness of individuals. The width and height specify 

the width and height of the dataCanvas.  

o Setup a web-GUI version of the running genetic algorithm on github pages. 

▪ https://conraddudziak.github.io/ImageCreationWithGeneticAlgorithms/ 

Figure 5 shows the UML class diagram for the interaction between the driver component and 

the population object. The driver is responsible for collecting inputs and running the iterations 

of the genetic algorithm, which is exposed to the driver through the population object. The 

population object is constructed by the driver and called to iterate the generate method at set 

intervals. 

Figure 6 shows the UML class diagram for the entire genetic algorithm, where the population is 

responsible for constructing Individuals. The genes of Individuals then consist of a Picture, 

https://conraddudziak.github.io/ImageCreationWithGeneticAlgorithms/
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which in turn consist of Polygons and Vertices. The picture object contains the base level draw 

method, which handles the actual logic for drawing the polygon data onto a canvas parameter. 

Figure 5: UML Class Diagram of Driver and Population Components 

 
 

Figure 6: UML Class Diagram of Genetic Algorithm 

 
 

Deploying the Genetic Algorithm 
There are many options and methods to deploy a web hosting service for user access. The two 

web hosting services used in this project were github pages and Microsoft Azure.  
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Github pages allows for rapid prototyping at no cost and is used to host a client-side version of 

the genetic algorithm. This means that the computational load of the genetic algorithm is 

placed onto the user’s web-browser. In comparison, Microsoft Azure offers the ability for the 

computational load of the algorithm to occur on the server side. 

Figure 7 shows a proposed dataflow diagram for the integration of Microsoft Azure into the 

genetic algorithm. Information is passed between three main entities in the diagram: the users 

web-browser, the azure web app, and an azure web job.  

Figure 7: Dataflow Diagram of Proposed Azure Integration 

 
 

The users web-browser sends a connection request to the Azure Web App, which hosts the 

index.html page along with the supporting JavaScript items. Upon clicking the start button, an 

HTTP get request is sent to the Azure Web App to request an Azure Web job process ID. The 

web job then returns a handle to the Azure Web App which opens a new page in the user’s 

web-browser.  

The Azure web job then handles computations of the genetic algorithm and the user web 

browser can query for results. The query contains a process ID which the Azure web job uses to 

identify which process is computing the user’s algorithm. A data package is then returned to 

the user’s web-browser through the Azure Web App containing the best fit image and the 

accompanying genetic algorithm data. 
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Figure 8 shows a stack representing the system levels which information is passed to and from 

the client side. 

Figure 8: System Dataflow Stack 

 

For the final deliverable of this project, only the Azure Web App was completed as part of this 

system. Azure Web Job was not fully integrated. 

Results 
 

The process of creating an image constructing genetic algorithm required iterative deliverables 

that slowly built up to a final product. Therefore, the strategies and functions implemented 

within the final algorithm are as much a result of this project as the actual data outputs 

collected in the projects analysis. 

Fitting, Scoring, and Breeding 

The final scoring method of this project uses JavaScript canvases to convert polygon sets into 

image data. Figure 9 shows an illustration with pseudo code of the scoring process. 

Figure 9: Fitting and Scoring Pseudo Code Illustration 
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The other key result from the construction of this algorithm were the differences between 

breeding strategies. Specifically, this project explored the differences between parent breeding 

and mutation breeding. Figure 10 shows an illustration of the two breeding strategies, where 

both processes explore different methods of reproducing the next generation.  

Figure 10: Illustration of Parent Breeding and Mutation Breeding 

 

Parent breeding reproduces by using two or more individuals to construct a new individual, 

where each parent involved has a chance to pass DNA to the child. Mutation breeding is the 

process of a single Individual mutating into multiple individuals, which are then selected for 

survival based on their fitness. Table 1 shows a comparison of parent breeding and mutation 

breeding. 

Table 1: Comparison of Parent Breeding and Mutation Breeding 

Criteria Parent Breeding Mutation Breeding 

Technique Genes are passed to children 

which replace the population 

Genes mutate to replace individuals’ 

old genes 

Replacement 

Method 

Children always replace the 

previous generation 

Resulting mutated genes replace old 

genes only if they are more fit 

Population Size >= 2 1 

Mutation 

Restrictions 

Parents must share similar gene 

structure (number of polygons) 

No restrictions 

Can Mutate • Colors 

• Vertices 

• Colors 

• Vertices 

• Total polygons 

• Total vertices 
 

Mutation breeding provides the genetic algorithm with further control of the ways which the 

population set can be converged. Furthermore, mutation breeding gives the population the 

ability to start with minimal gene sequence data. This means that the population can begin 

with individuals only containing a single polygon, which helps improve early runtimes. 
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Figure 11 shows a comparison of the data collected with the algorithm using both parent 

breeding and mutation breeding. 

Figure 11: Comparison of Parent Breeding and Mutation Breeding 

 
Mutation Breeding Generations: 250 Generations: 800 Generations: 12000 Generations: 71000 

 Time: 10 seconds Time: 30 seconds Time: 5 minutes Time: 1 hour 

Best fit: 23% Best fit: 52% Best fit: 74% Best fit: 87% 

 

 
Parent Breeding Generations: 110 Generations: 320 Generations: 4000 Generations: 22000 

 Time: 10 seconds Time: 30 seconds Time: 5 minutes Time: 1 hour 

Best fit: 8% Best fit: 32% Best fit: 51% Best fit: 71% 

Figure 12 shows more output results of the genetic algorithm ran with both parent breeding 

and mutation breeding.  

Figure 12: Genetic Algorithm Test Case Results 

 
Target Image Generations: 250 Generations: 750 Generations: 3500 Generations: 7000 Generations: 50000 

 Time: 10 seconds Time: 1 minute Time: 5 minutes Time: 30 minutes Time: 3 hours 

Avg fit: 51% Avg fit: 68% Avg fit: 78% Avg fit: 83% Avg fit: 89% 

Best fit: 58% Best fit: 71% Best fit: 79% Best fit: 85% Best fit: 90% 
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The use of parent breeding and mutation breeding is situational, where no single breeding 

strategy is best for every case. For example, the square image in figure 12 uses mutation 

breeding to subtract unneeded geometry, while the Mona Lisa image uses parent breeding 

because of its need for detail which a larger gene sequence can provide. 

Conclusion & Lessons Learned 
 

Artificial creativity is constrained by two fundamental barriers: Rule breaking and the evaluation 

of creativity. This project intended to solve these barriers using genetic algorithms. The 

following is a discussion on the pros and cons of genetic algorithms in artificial creativity. 

Pros and Cons of Genetic Algorithms in Artificial Creativity 
Google’s Deep Dream is an artificially creative program that uses convolutional neural 

networks to find and enhance patterns in images through algorithmic pareidolia. This solution 

requires a black box algorithm that has greater freedom in rule breaking but is much harder to 

evaluate. A block box algorithm prevents the ability for a human to study the functions and 

strategies that exhibit the creative behavior.  

In comparison, the image constructing genetic algorithm created in this research project is 

much easier to evaluate because of its well-defined fitness function and breeding strategies. As 

a result, the functions that are producing creative outputs can be observed and tweaked in 

order to help define creativity and what makes the algorithm creative. 

Although the fitness function of a genetic algorithm makes the softwares creative behaviors 

easy to evaluate, it also inhibits the programs ability to break rules. This is because fitness 

functions and breeding strategies must be distinctly written by a human, which inevitably limits 

the creativity of the machine and its ability to handle problems. 

Future Work 
 

Future work on this project consists of improving the fitness function so that the algorithm will 

no longer require a target image for comparisons. 

Integrating Image Recognition 
In order to produce an algorithm that can create unique images without the need of an input 

reference image, a neural network is required. Instead of comparing pixel values, the program 

can pass image data arrays to an external image recognition software. The algorithm will then 

receive feedback based on what the software possibly recognizes in the polygon set. The 

recognized object will then be used to score the population and slowly converge the 

population towards the most recognized version of that object. 


